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Abstract? 

The scattering matrix of a 3^0 degree circumferential slot 
in an Infinitely long circular waveguide with an incident dominant 
circular-electric wave is obtained by a variational principle. 
The theory which should be very good for small gaps is shown to be 
in good agreement with the obtained experimental results,, 

Introduction 

Consider a circumferential gap in an infinitely long, per- 

fectly conducting circular waveguide as shown in Fig. 1„ The 

gap can be considered to be a region of free-space coupling two 

serai-infinite circular waveguides. Assuming that the gap width 

is small compared to the guide wavelength, the basic problem is 

to determine the effect of the gap on an incident TE0, wave. 

The energy in the TEQ, wave incident on the gap is partially 

reflected and partially transmitted. Some of the energy is cou- 

pled through the gap to the free space surrounding the waveguide. 

Since the power relationships are the essential quantities of 

interest, the problem is formulated in terms of the scattering 

matrix of a waveguide junction. 
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Intuitively, the small gap should have little effect on 

the propagation of an incident circular-electric wave. The 

circular-electric modes have the unique property that the wall 

surface currents are purely transverse. These transverse cur- 

rents do not tend to charge the metallic boundary of the circum- 

ferential gap5 hence little energy is expected to radiate into 

space. On the other hand, all TM modes are characterized by 

solely longitudinal currents on the guide wall, and all TE modes 

other than the circular-electric type have longitudinal components 

of current. It can be concluded that the modal energy of all ex- 

traneous modes will be coupled strongly to the surrounding medium0 

The problem is formulated in terms of an integral equation 

for the axial component of the magnetic field on the gap surface, 

A variational principle is applied and a parameter A is introduced 

representing the stationary parameter in the variational formulation 

of the integral equation. For simplification, even and odd excita- 

tions are used and the elements of the scattering matrix are ex- 

pressed in terms of the appropriate A's. The restriction imposed 

by the theory is that the gap width must be small compared with 

wavelengtho 

2e Formulation of the Problem. 

Since the following analysis pertains to circularly symmetrical 

waveguide modes, the electromagnetic field components can be de- 

rived from a scalar function which is independent of the /J- coor- 

dinate. Assuming a time dependence exp -io>t, the circular-electric 

modes are obtained by solving the equation 

L K^(r,z) * 0 (1) 

where the operator L acting on the jb-compcnents of the field is 
given by 

a2 i a_ 
* d„2 

+ r dr ~ dz 2 
+ k' (2) 
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FIG.  i        A  CIRCUMFERENTIAL GAP IN  AN INFINITELY 
LONG CIRCULAR WAVEGUIDE 
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The other field components can be expressed In terns of 
E„ by; 

Vr»z) "sfcii Vr'z) 

Hz<r<2> = fH£rVr'z) (3) 

B. E. 

The walls of the cylinder are assumed to be perfectly con- 

ducting^ therefore, the boundary conditions at the wall require 

that the tangential components of the electric field vanish. 

Hence, the boundary condition is 

Vr'z)] = 0 (4) 
rea 

A circumferential gap, of width 2g, centered at z = 0 is 

introduced In the infinite guide as indicated in Fig. 2. The 

region for r < a will be designated by superscript I and the 

region exterior to the guide, r > a, by superscript IT. 

In region II (r > a) the field can be expressed in terms of 

a Green's function and the field distribution on the surface of 

the gap. The Green's function is defined by the equation 

L G11 (r,r',z-z') •- 8(*-r'?6(»-8')  r>a 

G11 (r,r',z-z 

'1, • ° (5) 

By making use of Green's second theorem, an integral represen- 

tation of the external field can be found in the form 

II 

where 

(r,z) =J  [jrgpr' 011 (r,r«,z-z')     £(z')dz' 
J-g r'ea (6) 

!<••) - [yrfi»)] 
r=a 

 1 TiCi r%»1 
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While an explicit form for this Green's function can be 

obtained if desired, it is not necessary. Actually, it is 

simpler to determine the function occurring in the integral of 

(6).  It is apparent from (6) that the integrand must satisfy 

the two conditions 

I^TVP-  r' GIX(r,r',M») 1 0  r> a 

IT r' GIX(r ,r',z-z')      - 8(z-z' 

(7) 

(8) 

as well as the Sommerfeld radiation condition,. By the use of 

the Fourier transform one obtains an expression of the form^ 

where 

•v^T?2. flgrrp    for5> 

(9) 

It is immediately apparent that such a choice satisfies (7) 

and (8) as well as the radiation conditions.,  Since the Green's 

function is unique, (9) is, therefore, the desired function. 

A similar analysis can also be carried out for the region I 

(r > a)»  Since there are fields propagating inside the pipe, 

the resulting expressions for the fields include an additional 

term representing the incident wave.  In this case one obtains 

dz «J<r,*> =BJinc,(r'z) " /  [r^5F-r" Q*<r,r» ,•-••)]    g(z') 
j-g ri=a 

(10) 

Performing an analysis similar to that for region II, it is 

possible to show that" 
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L i" 3r " r« G1(r,r«,z-z*) ] 
r'=a 

,  ,   i5(z-z«) J, (Vk2-S2 r) 

S^ph?-*?  a) 
(11) 

Assuming only a single mode propagates in the pipe, the 

Bessel function in the denominator of (11) vanishes at two places 

(± YT) on the real axis, and at an infinite set of points (+ iy_) 
along the imaginary axis. The contour, C, used in (11) is that 

indicated in Fig* (3). The contour is chosen to pass around the 

singularities in the manner shown so that the Green's function 

represents only waves propagating away from the junction. 

Thus, the entire electromagnetic field has been expressed in 

terms of the field on the surface of the gap. It remains now to 

determine integral equations for these fields. This can be done 

by matching the magnetic fields across the gap. 

In particular, from (9) the magnetic field in the gap surface 

can be shown (except for dimensional constants) to be 

i 

H"(a,z) * 

where 

[r3r rEf(r,z)] 
r=a 

g 
KII(z-z') g(z')dz' 

Kn(z-z') = 

CO 

V i/-CO 

iS(z-z') 
H<$) d$ 

(12) 

(13) 

and 

H(5) 

"i^CVF^2 a) 

V^ (14) 

Similarly, from (10) 

^(•,«>.«[)£>«J<r,«)] - [| 
r=a 

h: r EL„„  (r gr        pine. ,2)1 
r=a 

- = trsitf 
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where 

and 

lfow 

f    ICT(Z- 
J-g 

2') £(z»)dz« (15) 

ri(M.) .^y i$(z-z») 
e J(SM 

W?^± 
i1efi£& 

± V?T2 

a) 

HXI(a,z) =H^(a,z) -g < z<g    , 

and,  therefore,  one obtains the integral equation 

(16) 

(17) 

r&rE2inc.(r*z> 
r=a u-g fj 

• 

KIX(z-z') - KX(z-z«) % (z')dz' -g<z<g 

(18) 

3. Variational Formulation. 

It is now convenient to separate K (z-z') into two terms, 
follows: 

as 

KT(z-z') -ft,-..)"+jj. [ ^^ 
J(6)«?    (19) 

where 

ffX(z-z') = 
J-00 

00   i$(z-z«) 
e       J(£)d5 (20) 

i.e., integrals along the real axis and similar in form to those 

of (13). The remaining integrals along the contour, C, indicated 
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FIG.  3 CONTOUR  C   IN   COMPLEX  PLANE 
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In Plgo 4 can be evaluated by means of residues. 

The Integral equation then assumes the form 

lYla3r-      T 
+ /  cosYl(z-z')^(z')dz 

=a  J-g 

K(z-z')|(z')dz' (21) 

where 
-g 

Yla- 

iP: [• ii/ K(z-z') = -*~   K11(z-z') - K^z-z') (22) 

and, the constants P,, Y, are defined by 

hth) = 0  *    Yi =V*2 - <ir)2 

The fields incident in the waveguide can be expressed in 
the form 

Pi J-,<Pi f) 

Their z-dependence^ <x(z), is, In general, of the form 

iYiZ      -iT.z 
a(z) - Ae  x  + Be    x 

i.e., fields incident on the gap from either the right or left, 

It is convenient to specialize this into even or odd incident 

(23) 

fields, i.e., 

(^(z) = cos Y_z even 

(^(z) - sin T-z       odd 

For the even case, %   (z) = j; (-z) and hence, 

fc 

\   I 
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ccs •••1Cz-.r')5e(al)dz«   = ap(z)    /       ae(z« )|e(z' )dz« 
J_g 

Similarly,  for the case of ode]  excitation   £Q(z)  = - £Q(-z) 
and hence, 

/*g rg 
/ cosY1(z-z')g0(z,)dz«   = aQ(z)    /       aQ(z»)g0(z')dz« 

J_g J-g 

Therefore, for either even cr odd excitation, 123) can be inserted 
in the integral equation (21) 7«hich then becomess 

a(z) I -  I   a(z«)|(z')dz' 
,g 

K(z-z')|(z')dz« 

'-g • (24) 

Multiplying (24) by | (z), integrating from -g to g and 
dividing by 

ig 

a(z)|(z)dz 

J-g 
principle 

yields the variational 

L  = 

/g r&    r& 
a(z)i-(z)dz   /  /   K(z-z')g(z)|(z')dzdz' 

,g 

'-g 

a(z)j-(z)dz 
,g 

ly-g 

a(z)^(z)dz 

(25) 

(25) can be shown to have all the usual variational properties, 
i.e., A is stationary with respect to small changes of%{z)  about 
its correct value and A is independent of the overall amplitude 
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Of £(z) c 

Thus, it is possible to insert an approximate value for 

£ (z) in (2$)  and obtain relatively more accurate values of A6 
As will be seen later, the various A's can be related to the 

scattering matrix of the Junction.. 

Referring to equations (13), (14), (17), (20), and (24), it 

is seen that K(z-z') can be expressed in the form 

f00  iS(z-z') 
K(z-z') = I  e       *(5)d£ 

J-CD 

where, using the Wronskian for Bessel Functions, 

The variational principles can then be written in the form 

^-00 

i2(S)*(5)d$ 

where 

cos j>z £(z)dz 

$.($> - J=i- e 

COSY-^Z £ (z)dz 

'-g 

(26) 

^ = S? ^ ? a)H^W Zg a)      (27) 

(28) 

(29) 

|  sin fc* g(z)dz 

*>(*) - J^  

/  sinr^ £(z)dz 

It remains now to choose trial functions forjj(z) and insert 
them into (28)„ 

it 

ii 

>v 

' W——1 IIJT  l 
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l^ns'.ze:   the following choices 

ie(Z) =Vg2 -z2 i0(Z) = zVF^? no 

It Is apparent that these functions satisfy the symmetry conditions 

and have the correct static dependence on the ^ = gp o** the gao. 

7or small gaps they should, therefore, be good aoproxircaticns to 

the correct fields.  Inserting these into (29) yields 

$e<5) =SJl(Ylg) 
<fcg) 

• 5 j^g) -~v 
^g 

$°(^ = 2Ji(Yig-     5EJ) 
(Ylg)' 

~ (3D 

Inserting (31) into (28), it can be shown (see Appendix) that 

*e -^"1 4      TT  V ' 

laPl 

ikai! + £1  (a54 
16     n KgJ 

It is to be noted that these results are only valid for small 
2 2 gaps, i.e., g /\    << 1. Results for larger gaps would be difficult 

to obtain theoretically because of the lack of satisfactory trial 

functions for £(z). Moveover, it is virtually impossible to make 

satisfactory experimental measurements for large gaps since the 

interaction of the gap with the "free space" region outside the 

guide is of prime importance and a "free space" region is difficult 

to duplicate experimentally. 

\ *--~ 
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4. Transmission-Line Representation 

It is now desirable to express the scattering matrix ele- 
ments in terms of A and AQ» This can be accomplished by ex- 
amining the fields inside the waveguide at a terminal plane lo- 
cated a great distance from the gap discontinuity.  The evalu- 
ation of the scattering (or Impedance) matrix requires the knowl- 
edge of the explicit asymptotic expression of the Green's function 
of equation (11). This expression is obtained in the appendixc 
Substitution of thfc asymptotic form into equation (10) yields 

Ej(r,z) = E = ,1 
#Inc (r ̂       Yla2 -j^7       J 

lYiz' i. e  x  £(z')dz' 

(33) 

for the electric field in the far zone. 

It then follows that the z dependence is of the form 

E; 
-iY,Z   rg 1Y-.Z' 

(r,z)^a(z) + e   x   /   e  -1 i[(z!)d (34) 

Now for the even case (a(z) = cosY^z) this expression becomes 

1Y..Z 
E^(r,z) ~ e  X + 

& 

1+2 f      cosYlZ' |(z') dz 
-iYlZ 

(35) 

and the even reflection coefficient  P can be defined as 

.g 
re = 1 + 2 j       COSY^1 ^(z')dz' 

J-g 
(36) 

Similarly, for odd excitation a(z) = sin Y^, the odd reflection 

h- 

i 
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coefficient P  can be expressed as 

r0 - -1 - 2 f sinY1z» 5(zOdz«      (37) 

The integrals of equations  (36)  and (37)  can be expressed in 
terms of A from equation (25),  resulting in 

r. 

e     A    + 1 
0 (38) 

*0 -1 

°-S7TT 

The elements cf the scattering matrix are then given by 

Sll " S22 
' 0 * l 1     1 

1 + A„ " 1 + A. o     a 

S12 - -S 2 -.  1    1 1 - TTTS; - rr-s; (39) 

5o Experimental and Theoretical Results 

Measurements of the characteristics of the circumferential 

gap were performed in a 5.755-in. i.d. brass tubing at a free- 

space wavelength of 10.000 cm. Deschamps' method was used to 

determine the elements of the scattering matrix of the circum- 

ferential gap. In comparing the theoretical and experimental 

results it was convenient to examine separately the absolute 

values and arguments of the scattering matrix elements. This 

method of presentation of data was chosen because the experi- 

mental values of amplitude and phase were determined separately 
by Deschamps1 method. 

'"limp m 
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The absolute values of S,,, S22, and S12 
are then given by 

Sll|   =    S22 
A     - A e     °o 

'12 

1   + A        1   +  A 
! o] | e 

ltAo|   |1+*e| 

(40) 

and their arguments are found to be 

Arg Sn = Arg S22 = Arg(Ae - Afi)  - Arg(l + AQ)  - Arg(l + Afl) 

Arg S12 - Arg(AeAQ - 1)  - Arg(l + AQ)  - Arg(l + Ae) (41) 

The experimental values are plotted on the same figure as the 

theoretically determined curves in Pigs. 5 and 6.* It is observed 

that the experimental value of IS^I and |S12| are in excellent 

agreement with the theory for values of 2g up to 1.000 in. corre- 

sponding to £ = 0.127. It is recalled that the theory is only 

claimed to be valid for values of (£)  «1« As seen from the 

phase characteristics of S,,, the experimental values lie slightly 

above the theoretical curve for small values of 2g.  It is observed 

in Pig. 6 that there is again excellent agreement between experiment 

and theory for values of Arg S12 such that 2g <^ 1.000. 

A detailed description of the experimental techniques as well 
as a more complete discussion of the experimental results is 
given in Cruft Laboratory Technical Report No. 16?.  It should 
also be noted that in calculating the theoretical values of the 
scattering matrix elements from equation (32) -J is substituted 
for + i to conform to the convention established in measurement. 
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Appendix A 

Evaluation of the Varlatlonal Parameters A and ^ 

The determination of the elements of the scattering matrix 
of a circumferential gap requires the evaluation of 

e f J-OD 

t e(5)*(9d*; 
-CD 

CO 
(A-l) 

r J-oo 
• Iwnwt 

kince the assumed electric field distribution in the gap is 
a good approximation only for small values of Y^g, the parameters 
9  (§) and * (§) can be expressed in the approximate form 

•M) e 
= Vi(*g)    * 2Ji^g^ 

S^^g)       £g 
*!&«  1 

(A-2) 

2  r ft   ,  Jo(^g) —2 Ji<5g) - 

2 "  Yjg 

8 
Ylg 

2  , tu  s       Jo(^} 

(*g) 
2 3&*)  - 

(Yxg) 

and "^(fe) is given by 

&g 

Ylg « 

v2 

t^p^CTfc2 -^ a)H{1J(^ -^ a) 
(A-3) 

It is convenient to determine separately the real and imagi- 
nary parts of Ae and AQ. Proceeding to evaluate R.P. A one 

. 

;. 

k 
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observes that the Integrand is real only for £ <k» Therefore, 

assuming kg <<1 as well as Y-^g <<19 so that J^fjg) = %j* for 
0 < t,  < k, it follows that 

2V2 
R.P» A^ = A  * Al 

n' 'l Jo jf 6k2 - $2 a) + Y^k* -$*a) 

2Y1&
2J } 

(A-4) 

dt 

|H^(/rT?ka)|; 

For t <<!,' the denominator is large, and hence there is 

little contribution. On the other hand for t near zero, and with 

ka equal to 4«>592, the Hankel function is already well approximated 

by its asymptotic form 

H^cVl-22 (ka 
nka 

—r fl + 1 2I <A-5) f^2 [^   8(l-t2)(ka)2 

Inserting (A-5) into (A-4) results in 

^1   Jo   1+ ^2 
dt (A-6) 

where the quantity 6 is defined as 

8(ka)' 

Equation ^A-6) can be written as 

RoP. AA = — e 

k2a3 

4P 2 
1 

1 - 
8 + (1-t^) 

dt 

(A-7) 
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J 

! 

Now since 6 << 1, it can be neglected in evaluating the remaining 

integral of (A-7). One then obtains 

Y.k2a3 |-    T   Y.,k2a3 

R.P. A_ * x 0  ll - 26 J =  * * 
4PJ 4PJ e CA-8) 

To evaluate the imaginary part of A , examine the integral 

Y„a 

t?Pi J.QO JxCVk^ -fc* a)^1^* -$* a) 
I.P.   Ae   =   I.P.   ^|^     /  J  JJ Ifo TTT-7^—•*    dfc 

(A-9) 

Noting that the integrand is imaginary for values of § > k, and that 

the major contribution to the integral occurs for 5 >> k, one can 

write 

rl v-oo 

(A-10) 

where the asymptotic expression 

^(Vk2-^2 ajH^O/k2-^2 a) * J^ikOH^USa) (A-ll) 

TTiga 

§a    >>   1 
has been used. It then follows that* 

I.P. A e 

4 **v r *1 g  Jo 

[V**)] 
d$ = 

•Watson, A Treatise on. tJie. Theory of Bessel Functions. Cambridge 
University Press, London, 1945, p. 397. 
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8V -a 2 
TTfJ    « 

CD 

I [Jx(t)] dt 

4Yla 

np; 2 V (A-12) 

In a similar fashion the real part of A is given by 

R.P. AO = 
Yla  ft 2 r°° R-p- -r2(ri^   / 

<fcg) 
•2 'i««) - ~% 

'<,««> 

00  ^(1/k^ a)H(l)(^ a 

- °S 

(A-13) 

It is seen again that the integrand has a real part when k < $ . 

Again assuming kg << l, and using the leading term in the exnansion 
of the numerator, one obtains 

RoPe Ao = -2$- 
52 

H^^-^a)|2 
d* 

Again making the substitution t = S/k 

2(ka)3 

R.P. A    =    A    . 0      -,2 2. 
t2dt 

(A-14) 

"HPlV    Jo    |HlA;rti.t2    ka)|2 (A"15) 

Introducing the asymptotic expression IH^CY^ ka)| 2 
this become? ' I nkalfl-t- 

R0P 
0 2 / 

Ti¥  Jo 
i-t2 t2dt 

= -   (ka)4       ,„ 
2 (Peirce No.   145) 

l6oiv,a (A-16) 
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Finally, by using an argument similar to that which led from 

(A-9) to (A-10), the imaginary part of AQ is seen to be of 
the form 

I.P. L^  = 
TrplYla 

K 

where 

By the substitution t - £g, 

I = {{^"'•^Wt,^' 
This integral can be expressed as 

-{{^-4^+i^]] dt 

*    J?(t) oo   T2 £  i£i„_ j^.i^].^ 
Therefors 

I.P. A    = -42-    (A) 

CA-17) 

d!?        (A-18) 

dt (A-19) 

(A-20) 

S? "P?r-.a g' (-21) 

Pinally, the resultant expressions for the variatlonal 
parameters are given by 

(A-22) 
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Appendix B 

Evaluation of the Explicit Asymptotic Expression of 

the Green'3 Function of Equation (11) 

It is desired to derive an explicit form for the Green1s 

function of equation (11) in order to evaluate the far-zone 

electric field in region I, The expression for the Green's 

function is given by 

Jrsfrr.oW,*-*')    -£ J e+l5<M'> 
Jr« 

Jx( Vk^r) 

j^y^-a/ 

(B-l) 

where the contour C is chosen as in Fig. 3„ 

It is noted that the integrand is analytic except for simple 

poles at £ s + Y1 and % • + iYn (n> I). Since the result is 

required lor z «z* it is*appropriate to close the contour with 

a large semi-circle in the lower half-plane. It is apparent 

that the integral along the semi-circle vanishes as its radius 

tends to Infinity* Therefore, by the theory of residues, and 

noting that only the poles % = -Y, and % 

losed, one obtains 

p-S^r r'G^rV-z*; = 2ni 
2n 

«=. 

iY^ (n > 1) are 

Residue at 
rl (B-2) 

$= - iYn (n^l) 

Since e -v   '  represents a rapidly attenuated function when 

z «z' and £ is negative imaginary, all higher°order terms are 

negligible compared to the dominant-mode term. 

Evaluating the residue corresponding to£= y.^  one obtains 
the desired expression 

' [p-ST?" r'G^V^z-z') 
-r 

iplJl(Pl f> e -iYl(z-z') 
Y^^CP^ 

Z<<Z' 
(B-3) 
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